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Abstract

Increasing evidence indicates that brain inflammation is involved in the pathogenesis of neuropsychiatric diseases.
Autism spectrum disorders (ASD) are characterized by social and learning disabilities that affect as many as 1/80
children in the USA. There is still no definitive pathogenesis or reliable biomarkers for ASD, thus significantly
curtailing the development of effective therapies. Many children with ASD regress at about age 3 years, often after
a specific event such as reaction to vaccination, infection, stress or trauma implying some epigenetic triggers, and
may constitute a distinct phenotype. ASD children respond disproportionally to stress and are also affected by food
and skin allergies. Corticotropin-releasing hormone (CRH) is secreted under stress and together with neurotensin
(NT) stimulates mast cells and microglia resulting in focal brain inflammation and neurotoxicity. NT is significantly
increased in serum of ASD children along with mitochondrial DNA (mtDNA). NT stimulates mast cell secretion of
mtDNA that is misconstrued as an innate pathogen triggering an auto-inflammatory response. The phosphatase
and tensin homolog (PTEN) gene mutation, associated with the higher risk of ASD, which leads to hyper-active
mammalian target of rapamycin (mTOR) signalling that is crucial for cellular homeostasis. CRH, NT and
environmental triggers could hyperstimulate the already activated mTOR, as well as stimulate mast cell and
microglia activation and proliferation. The natural flavonoid luteolin inhibits mTOR, mast cells and microglia and
could have a significant benefit in ASD.

Introduction
Focal brain inflammation
Increasing evidence indicates that brain inflammation is
important in the pathogenesis of neuropsychiatric dis-
orders [1,2]. Autism spectrum disorders (ASD) are per-
vasive neuro-developmental disorders characterized by
varying degrees of deficiencies in social interactions,
intelligence, and language, as well as the presence of
stereotypic behaviors [3-6]. Recent results from the Cen-
ters of Disease Control in the USA indicate that as many
as 1/80 children have ASD [7]. Many such children re-
gress at about age 3 years, often after a specific event such
as reaction to vaccination, infection [8,9], trauma [10,11],
toxic exposures [12] or stress [13], implying the impor-
tance of some environmental triggers [14,15].
Increasing evidence points to some immune dysfunc-

tion/inflammation in ASD [16,17]. The markers of in-
flammation identified in the brain and cerebrospinal

fluid (CSF) of many ASD patients include TNF, IL-6 and
monocyte chemotactic protein 1 (MCP-1), the latter of
which also is chemotactic for mast cells [18]. Pro-
inflammatory cytokine mRNA (IL-1α, IL-1β, IL-6 and
TNF-α) is increased in brain inflammation and has been
associated with hippocampal and cerebral damage [8].
Mast cells are a rich source of IL-6 and TNF [19]. In
fact, mast cells are the only immune cells that store
pre-formed TNF and can release it rapidly upon sti-
mulation [20].
Mast cells and cytokines such as IL-6 and TNF are

also implicated in disruption of the blood–brain barrier
(BBB) [21-23], which may be malfunctioning or leaky in
ASD as evidenced by the presence of circulating auto-
antibodies directed against the fetal brain proteins [24-27].
We had reported that the cytokine IL-33 synergizes with
inflammatory neuropeptides to stimulate mast cells and
result in increased vascular permeability [28]. IL-33 has
been considered an alarmin, acting through mast cells to
alert the innate immune system [29,30], and has recently
been linked to brain inflammation [31-33].
We have also reported that neurotensin (NT) and

corticotropin-releasing hormone (CRH), secreted under
stress, synergistically stimulate mast cells, leading to
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increase vascular permeability [34] and contribute to
BBB disruption [35]. We further showed that NT stimu-
lates mast cell secretion of vascular endothelial growth
factor (VEGF) [36], which is also vasodilatory. NT also in-
creases expression of CRH receptor-1 (CRHR-1) [37], acti-
vation of which by CRH increases allergic stimulation of
human mast cells [38].
NT is a vasoactive peptide originally isolated from the

brain [39], but also found in the gut where it has been
implicated in inflammation [40], and in increased intes-
tinal permeability in rodents [41]. NT is also increased

in the skin following acute stress, stimulates skin mast
cells and increases vascular permeability in rodents [42].
NT stimulates rodent peritoneal mast cells to secrete
histamine and elevates histamine plasma levels through
activation of specific NT receptors (NTR) [43-45]. More-
over, NT is rapidly degraded by mast cell proteases [34,46]
implying tight regulation of its activity.
Mast cells are hemopoietic-derived tissue immune

cells responsible for allergies, but also implicated in im-
munity [47] and inflammation [18]. Mast cells can pro-
duce both pro- and anti-inflammatory mediators [48]
and may have immuno-modulatory functions [47,49-51].
It is, therefore, of interest that allergic-like reactions are
common in ASD children [52,53] implying activation
of mast cells by non-allergic triggers [17]. The richest
source of mast cells in the brain is the diencephalon
[54] that regulates behavior, while the highest con-
centration of NTR is in the Broca area [55], which re-
gulates language, known to be lost in many children
with ASD. Mast cells are responsible for eliciting neutro-
phil infiltration that promotes inflammation [56]. Mast
cell-microglial interactions are important in neuroin-
flammatory diseases [57,58]. Microglia are the innate
brain immune cells that are increasingly implicated in a
number of neuropsychiatric diseases [59]. In fact, ab-
normal microglial growth and activation was recently
reported in the brain of ASD patients [60,61]. Microglia

Table 1 Neurotensin actions relevant to autism spectrum
disorder (ASD) pathogenesis

Effect Result

Activation and proliferation of microglia Brain inflammation

Activation of mast cells Blood–brain-barrier
disruption and inflammation

Disruption of gut-blood barrier Leaky gut and inflammation

Mast cell stimulation, especially in the
subgroup of ASD patients with allergic

symptoms

Augmentation of allergic
symptoms

Extracellular secretion of mitochondrial
components that act as innate pathogens

Inflammation

Stimulation of glutamate receptors Neuronal damage

Direct neurotoxicity Neuronal damage

Figure 1 Diagrammatic representation of how stimulation of mast cells and microglia could lead to multiple effects that contribute
brain inflammation and the pathogenesis and symptoms of autism. MCP, monocyte chemotactic protein.
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express NTR3, activation of which leads to their prolife-
ration [62].
NT has additional actions that are relevant to ASD

(Table 1): it induces intestinal secretion and mobility
[63], stimulates glial cell proliferation [64], and can fa-
cilitate seizures through activation of glutamate recep-
tors [65]. In fact, the glutamate receptor mGluR5 was
reported to be overactive in fragile X mice [66,67], a con-
dition associated with high risk of ASD. In other words,
NT could contribute to ASD pathogenesis through diffe-
rent mechanisms (Figure 1).
There is also support for increased oxidative stress

[68] and some mitochondrial (mt) defects at least in
subgroups of patients with ASD [69]. We showed that
mtDNA is significantly increased in the serum of young

autistic children [70], who also had significantly in-
creased serum level of NT [71]; this triggers mast cells
to secrete mtDNA [38] that acts as innate pathogen to
stimulate mast cells [72] and other immune cells, lea-
ding to auto-inflammation [73]. Moreover, mtDNA can
cause neuronal degeneration and altered behavior [74].
We believe that ASD originate from immune perinatal
insults [75,76] that activate ASD susceptibility genes
leading to focal encephalitis (Table 2).

Epigenetic activation of ASD susceptibility genes
In spite of the fact that almost 100 gene mutations have
been identified in patients with ASD [77,78], they do not
explain more than a few percent of ASD cases [6]. High
risk for developing ASD has been associated with mu-
tations leading to decreased phosphatase and tensin
homolog (PTEN) and tuberous sclerosis protein 1 and 2
(TSC1/2) [77]. These proteins are upstream inhibitors of
the mammalian target of rapamycin (mTOR) [77,79],
which leads to microglia and mast cell proliferation
[80,81]. Activation of susceptibility genes is being increas-
ingly invoked to explain ASD [7,82]. A recent paper
reported that offspring of maternal immune activation in
mice led to increased IL-6 and IL-17, and contributed to
ASD-related behaviors [9]; repopulation of control irra-
diated mice with bone marrow derived from affected
mothers did not induce those effects suggesting the con-
tribution of some epigenetic environmental influences.

Table 2 Key pathologic processes in ASD*

Change Pathologic processes

↑ Allergic-like symptoms

↑ Anti-brain protein auto-antibodies

↑ Food intolerance

↑ Brain and gut inflammatory markers

↑ High anxiety and response to stress

↑ Oxidative stress

↓ Glutathione

↓ Methylation, sulfation
*Not present all ASD children.

Figure 2 Diagrammatic representation of the mTOR pathway, how it may lead to increased risk of autism and the inhibitory effect of
luteolin. mTOR, mammalian target of rapamycin; PTEN, phosphatase and tensin homolog; AKT, protein kinase B.
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Stimulation of mTOR in subjects with overactive mTOR
due to gene mutations, leading to low PTEN, would con-
tribute to a form of epigenetic signal.

Novel treatments
Behavioral interventions are the most common treat-
ment approaches [83], but do not address the core ASD
symptoms [84,85]. Psychotropic drugs are used much
too often in ASD [86-88]. Such drugs include antipsy-
chotic medications [89], the newer atypical compounds
[90,91] risperidone [92,93] and aripiprazole [94] for ob-
sessive-compulsive symptoms, aggression and self-injury,
as well as methylphenidate for hyperactivity [95]. How-
ever, two recent reviews concluded that there is insuf-
ficient evidence to support any benefit of psychotropic
drugs [96] or selective serotonin re-uptake inhibitor
(SSRIs) [97] in ASD. In fact, the SSRI citalopram may
actually be detrimental [98], especially in children [99].
Moreover, a recent paper reported that citalopram admi-
nistration perinataly altered cortical network function and
led to ASD-like behaviors in rodents [100].
Rapamycin and its analogs are mTOR inhibitors [101]

and are being tried for treatment of ASD [102-105]
(Figure 2). Our preliminary results (not shown) indicate
for the first time that the natural flavonoid luteolin [106]
is more potent that rapamycin in its ability to inhibit hu-
man mast cell TNF release (Figure 2). A previous report
also indicated that flavonoid-related epigallocatechin gal-
late (EGCG) is an mTOR inhibitor [107]. Luteolin may
not only inhibit mTOR, but also has additional beneficial
effects in brain inflammation. It inhibits oxidative stress
[106], inflammation [106], mast cell degranulation [108],
mast cell cytokine release [38], thimerosal-induced in-
flammatory mediator release [109], microglial activation
and proliferation [110-112], and auto-immune T cell ac-
tivation [113,114]. Luteolin is also protective against
methylmercury-induced mitochondrial damage [115], is
neuroprotective [116] and mimics brain-derived neuro-
trophic factor (BDNF) [117], which was recently associ-
ated with autistic-like-behavior in mice [118]. Finally,
luteolin could reverse ASD-like behavior in mice [53],
and was recently shown to have significant benefit in
children with ASD [38,119].

Conclusions
The prevalence of ASD continues to rise, but there is
no clinically effective drug for the core ASD symptoms.
Unfortunately, the lack of distinct pathogenesis and
biomarkers makes it difficult to develop effective treat-
ments. Stimulation of mTOR, which is already activated
due to PTEN mutations, by NT, CRH and/or IL-33, could
serve as novel targets for drug development. NTR and
CRHR-1 antagonists could, therefore, be used in ASD,
along with luteolin.
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